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Abstract. Deblurring with a spatially invariant kernel of arbitrary shape
is a frequent problem in image processing. We address this task by
studying nonconvex variational functionals that lead to diffusion-reaction
equations of Perona–Malik type. Further we consider novel deblurring
PDEs with anisotropic diffusion tensors. In order to improve deblurring
quality we propose a continuation strategy in which the diffusion weight
is reduced during the process. To evaluate our methods, we compare
them to two established techniques: Wiener filtering which is regarded
as the best linear filter, and a total variation based deconvolution which
is the most widespread deblurring PDE. The experiments confirm the
favourable performance of our methods, both visually and in terms of
signal-to-noise ratio.

1 Introduction

In many application contexts, image acquisition leads to blurred images. Blurring
is caused e.g. by motion of objects and/or camera during the recording, from
defocussing or from specific errors in the optics of the camera. It is therefore
desirable to devise methods how to sharpen – to deblur – images. A variety of
different approaches has been proposed in the literature which differ greatly in
the assumptions made about the image and the blurring process.

An important case of image blurring is convolution with a fixed kernel. This
type of space-invariant blurring is especially found when defocussing and optical
errors or translatory motion of the camera have caused the blurring.

Under ideal conditions, convolution could be reverted by convolving with an
inverse kernel that could, e.g., be computed via the Fourier domain. However,
taking the reciprocal of the Fourier transform of some kernel always leads to an
unbounded function that needs to be cut at some frequency; moreover, for other
than very simple kernels (like Gaussians), zeroes occur which introduce poles into
the inverse. For these reasons, a pseudo-inverse is used. By a slight extension of
this idea, one obtains Wiener filtering which relies essentially on a regularisation
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of the inversion operation [16, 7]. These linear approaches give reasonable results
but the cut-off of high frequencies introduces characteristic oscillatory artifacts
(Gibbs-like phenomena) that cannot be avoided by any linear approach [2].

In the case of blurring by Gaussian convolution the special relation between
Gaussian convolution and linear diffusion also makes methods based on stabilised
inverse diffusion a possible choice [9].

Another class of methods aims at so-called blind deconvolution in which the
kernel is not known a priori but is reconstructed simultaneously with the sharp-
ened image. Obviously, assumptions on the image are inevitable here, otherwise
the problem is principally underdetermined. A favourable way to encode a-priori
assumptions on the image is the use of a variational framework [17]. Variational
blind deconvolution has been investigated in [1]. This approach combines decon-
volution with segmentation. The convolution kernels are restricted to Gaussians.
In the second part of [1], the combination of deconvolution with a known (not
necessarily Gaussian) kernel with segmentation is discussed.

The ill-posedness of all deblurring problems makes it reasonable to involve
any available a-priori knowledge in the reconstruction process. Methods for de-
blurring with known kernels are therefore not made superfluous by blind decon-
volution techniques; their better understanding can even support the develop-
ment of blind deconvolution methods.

In this article, we describe PDE-based approaches for deblurring in case of
convolution with a space-invariant kernel. We do not make specific assumptions
on symmetry of the kernel, instead, our method is designed to work even for
fairly irregularly shaped kernels. Our approach is motivated first by a varia-
tional model for deconvolution. The involved variational problem is solved via
a diffusion–reaction equation where the diffusivity is linked to the regulariser.
While total variation (TV) regularisation is a common choice in the literature,
we investigate the nonconvex regularisation which leads to forward-backward
diffusivity. By generalising to diffusion-reaction PDEs which are no longer as-
sociated with variational formulations, we can also include anisotropic diffusion
tensors in our study. Experiments show that improvements over established de-
blurring techniques can be achieved by these methods. Since the non-uniqueness
of steady states plays an important role, the treatment of the diffusion weight is
a central issue. We present a strategy to avoid unwanted solutions.

We also discuss problems occurring at image boundaries which are caused
by the admission of kernels without particular symmetries. Note that many
deconvolution methods discussed in the literature restrict the shape of the kernel,
e.g. to Gaussians with principal axes parallel to the image boundaries, or motion
blurs in directions parallel to the image boundaries. The specific symmetries of
such kernels make the treatment of boundaries considerably easier.

We proceed as follows. In Section 2, we discuss linear deconvolution meth-
ods. Section 3 then describes a variational deblurring model and derives our
basic deblurring PDE. Boundary conditions and the choice of the regularisation
parameter are discussed separately. Section 4 is dedicated to extensions of the



PDE-Based Deconvolution with Forward-Backward Diffusivities 587

basic model. These include the continuation strategy and the introduction of
anisotropic diffusivities. Experiments are presented in Section 5.
Related Work. Deblurring problems have attracted the attention of computer
vision researchers for a long time, and numerous publications exist on this and
related topics. Variational approaches to deconvolution with total variation (TV)
regularisation have been investigated e.g. by Marquina and Osher [8] for non-
blind, and Chan and Wong [6] for blind deconvolution, or recently Bar, Sochen,
and Kiryati [1] which addresses both classes of problems. TV regularisation in
image restoration has earlier been studied by Rudin, Osher, and Fatemi [12],
see also [10]. A variational approach to blind deconvolution with more general
regularisation has been presented by You and Kaveh [17].

Research on existence, uniqueness, and stability of solutions for these and
related problems can be found in the work by Bertero, Poggio, and Torre [3].
Continuation strategies have been considered for non-convex variational prob-
lems in visual reconstruction by Blake and Zisserman [4] and more specifically
in the context of total-variation based denoising by Chan, Chan and Zhou [5].

2 Linear Models

We assume that we have an image f which is the result of convolving the original
(sharp) image u with some kernel h and superposing some additive noise n,

f(x, y) = (u ∗ h)(x, y) + n(x, y) .

Assume first that the noise n can be neglected. By Fourier transform, the equa-
tion then goes into

f̂ = û · ĥ .

If h is known, one could in principle divide f̂ by ĥ to restore û and thereby u.
However, this inverse filtering procedure faces the problem that in general ĥ will
possess zeroes. These represent frequencies which are deleted by blurring with
h and must therefore not be present in a noise-free blurred image. But still ĥ is
close to zero in the vicinity of its zeroes, and, even if it has no zeroes, for high
frequencies. But in frequency ranges where |ĥ| is small, even minimal amounts of
noise are tremendously amplified, rendering the procedure extremely unstable.

The simplest approach to handle this difficulty is the pseudo-inverse filtering
which eliminates frequencies for which ĥ is smaller than some threshold H. A
more advanced regularisation of inverse filtering is Wiener filtering [16] which
replaces ĥ−1 by ĥ−1 |ĥ|2 /(|ĥ|2 + H2) such that we obtain

û =
1

ĥ
· |ĥ|2
|ĥ|2 + H2

· f̂ .

This filter displays better stability than pseudoinverse filtering. It has properties
of a band-pass and is therefore even well-suited to deal with moderate noise.

All deconvolution methods described up to here are linear methods which
allow for efficient implementations via Fourier transforms. However, all of them
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display characteristic, shadow-like artifacts particularly near edges and also near
the image boundaries depending on the boundary conditions used. As proven in
[2–p. 119pp.], linear methods cannot avoid these artifacts. Further improvements
can therefore be achieved only with nonlinear methods.

3 The Basic Deblurring PDE

3.1 Variational Motivation

Deconvolution of an image can be achieved by minimising the energy functional

E(u) =
∫

Ω

(h ∗ u − f)2 + αΨ(|∇u|2) dx . (1)

The first summand in the integral – the data term – is the square error of
the reconstruction of the blurred image from the deblurred image candidate.
This data term arises naturally in the deconvolution context and is also used
in the variational blind deconvolution models in [17, 1]. The second summand –
the smoothness term or regulariser – uses a monotonically increasing function
Ψ : IR+

0 → IR to enforce the smoothness of the deconvolved image.
Note that an unregularised energy consisting only of the data term already

has the original image as a global minimiser. Unfortunately, this minimum is by
far not unique since the data term is in general not strictly convex. If the Fourier
transform of h has zeroes, then contributions of the corresponding frequencies
may be added to u without changing the data term. Even if ĥ has no zeroes, it is
very small for e.g. high frequencies. Contributions from such frequencies hardly
influence the data term. Hence, the data term cannot effectively suppress arti-
facts like those encountered for linear methods. The smoothness term is needed
to reduce these ambiguities. In the case of a strictly convex regulariser Ψ , the
energy E as a whole might even be convex and the minimum therefore unique.

Solutions of our variational problem satisfy the Euler-Lagrange equation

0 = h̃ ∗ (h ∗ u − f) − α div
(
Ψ ′(|∇u|2)∇u

)
.

Here h̃ denotes the mirror-kernel h̃(x, y) := h(−x,−y). A gradient descent lead-
ing for t → ∞ to a minimiser of E is given by

∂tu = −h̃ ∗ (h ∗ u − f) + α div
(
g(|∇u|2)∇u

)
, (2)

a diffusion–reaction equation where the diffusion term with diffusivity g(s2) =
Ψ ′(s2) is related to the regulariser in the energy functional. This PDE can be
solved numerically, in the simplest case by an explicit discretisation.

3.2 Choice of the Diffusivity

An important point in determining the properties of the deconvolution process
is the choice of the diffusivity g. The simplest case, the constant diffusivity
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g(s2) = 1 which corresponds to Tikhonov regularisation Ψ(s2) = s2, tends to-
wards an over-smoothed deblurring result because high gradients at edges of the
reconstructed image are penalised over-proportionally. Moreover, in this case
the whole deconvolution method is again linear and suffers from the artifacts
described in the previous section.

Total variation (TV) diffusivity g(s2) = 1/ |s|, mostly in its regularised form
g(s2) = 1/

√
s2 + ε2, is a popular choice (see [6, 8, 1]), particularly since it en-

forces piecewise constant results and therefore encourages sharp edges in the
image. We therefore include TV diffusivity in our experiments.

Another interesting choice in isotropic nonlinear diffusion models is the
Perona–Malik diffusivity g(s2) = (1 + s2/λ2)−1 that is related to the noncon-
vex regulariser Ψ(s2) = λ2 ln(1 + s2/λ2), see [11, 14]. Note that the smoothness
energy Ψ(|∇u|2) is no longer convex in this case. It is therefore expected that
depending on the initial conditions different solutions are obtained.

To reduce the noise sensitivity of isotropic Perona–Malik diffusion (see
[14, 13]) it can be stabilised by using a Gaussian-smoothed gradient ∇uσ in the
diffusivity argument, turning the diffusion expression into div(g(|∇uσ|2) ∇u).
Though this stabilised Perona–Malik diffusivity can easily be used in our
diffusion–reaction equations (which in this case cease to be gradient descents
for energy functionals), experiments indicate that it bears no clear advantages
in this case.

3.3 Boundary Conditions

For solving the diffusion–reaction equations of type (2), suitable boundary con-
ditions must be specified. In many diffusion-based image processing methods,
reflecting Neumann boundary conditions work well because they guarantee con-
servation properties as well as a continuous extension of the image at its bound-
ary. Periodic boundary conditions for a rectangular domain lead instead to a
wrap-around of image information between opposite boundaries; moreover, they
introduce discontinuities which often entail artifacts in the processed image.

Unfortunately, the usage of reflecting boundary conditions for deconvolution
with space-invariant kernels is bound to fail if the kernel is not symmetric w.r.t.
the image boundary directions because reflected parts of the image would be
blurred with a reflected kernel, violating the model assumptions. Since periodic
boundary conditions are compatible with any shift-invariant blur, without im-
posing symmetry constraints on the kernel, we use periodic boundary conditions
or modifications of them.

A chief disadvantage of periodic boundary conditions are the discontinuities
introduced at the image boundaries. These lead to strong artifacts near the im-
age boundaries. To mitigate these artifacts as well as the undesired wrap-around
of image information in the deblurring with periodic boundary conditions, the
image can be extended continuously to a larger image with equal grey-values
at opposing boundaries. Periodic boundary conditions then no longer introduce
discontinuities, and the wrap-around influences mostly the amended parts of
the image. Since the assumptions of our deblurring model are still violated near
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the image boundaries, boundary artifacts are reduced but not perfectly elimi-
nated.

For quality measurements in our experiments, we therefore arrange a special
setting. We start by extending the sharp test image via horizontal and vertical
reflection to quadruple size. Periodic extension of this larger image is equivalent
to reflecting extension of the original image. Now the large image is blurred in
a periodic setting (i.e. with the left boundary wrapping over into the right one
etc.) with the irregular kernel. The resulting image has lost the symmetry of the
original larger image. In deblurring this image, we use again periodic boundary
conditions. While this approach cannot be used in real deblurring applications
where the blurring process is not subject to our control, its advantage is that
it admits a measurement of the deblurring quality, e.g. in terms of signal-to-
noise ratio, without including discontinuity and boundary artifacts which would
dominate the total result otherwise. By doing so, we ensure that the model
assumptions are met everywhere, at the cost of making this boundary treatment
unsuitable for naturally blurred images.

3.4 Choice of the Diffusion Weight

The extreme ill-posedness of the problem makes the choice of the diffusion weight
a difficult problem. We discuss this for the deblurring processes which minimise
a variational functional. In absence of noise, the non-regularised energy con-
sisting only of the data term is minimised by the correct solution. However,
the data term is insensitive to certain perturbations (those being annihilated
by convolution with h), preventing in general the solution to be unique. The
diffusion–reaction equation (2) in this case turns into a fixed-point equation
without diffusion part.

Assume now the energy is made convex by a suitable regulariser such that
a unique solution exists. Even if the weight of the regularisation (and thus of
the diffusion) is very small, it is practically only the regularisation term which
chooses the solution among those which cannot be discriminated by the smooth-
ness term. As a consequence, even a small diffusion weight can drive the solution
far away from the true unblurred image, leading to a deblurring result which
heavily depends on the type of regulariser (hence, diffusivity) used.

Particularly with nonconvex regularisers and the corresponding forward–
backward diffusivities, the existence of multiple steady states of the deblurring
process constitutes another issue. The solution which is really obtained depends
heavily on the initial conditions. When using the blurred image as initialisation
with small diffusion weight, similar artifacts as for linear deblurring methods
evolve. Large diffusion weights, on the other hand, induce an over-smoothing
and loss of small-scale details in the image.

3.5 Numerical Implementation

In order to solve equation (2) numerically, finite difference discretisations are
used for the diffusion term as well as for the left-hand side. The simplest way to
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do so is to use a forward difference for ∂tu and central differences from the old
time step for the diffusion term. Denoting by τ the time step size and by ∆x,
∆y the spatial step sizes in x, y direction, we are led to the explicit scheme

uk+1
ij − uk

ij

τ

= −Rk
ij + α

2∆x ((gk
i+1,j + gk

ij)(u
k
i+1,j − uk

ij) − (gk
ij + gk

i−1,j)(u
k
ij − uk

i−1,j))

+ α
2∆y ((gk

i,j+1 + gk
ij)(u

k
i,j+1 − uk

ij) − (gk
ij + gk

i,j−1)(u
k
ij − uk

i,j−1))

where the diffusivity g(|∇u|2) (or stabilised g(|∇uσ|2)) is discretised by

gk
ij = Ψ ′

⎛
⎝
(

uk
i+1,j − uk

i−1,j

∆x

)2

+

(
uk

i,j+1 − uk
i,j−1

∆y

)2
⎞
⎠

and Rk
ij discretises the reaction term h̃ ∗ (h ∗ u − f) at pixel (i, j) and time kτ .

The discretisation of the reaction term poses a difficulty. Since it contains
convolutions, its direct computation in each time step would be extremely cost-
some, even taking into account that h̃ ∗ h can be precomputed once for all time
steps. Note that Rk

ij is computed via the Fourier domain. Though this still re-
quires one DFT (or FFT for suitable image size) and one inverse transform per
time step, computing time is considerably reduced for kernels with large support.

4 Extensions

4.1 Continuation Strategy for Optimisation

It has been explicated that the deblurring model is ill-posed, i.e., it reveals not
only several local optima, but may even have multiple global optimum solutions
that do not depend continuously on the initial data. Consequently, the gradient
descent often does not yield the original image as solution, but some other steady
state which can be significantly different. In most cases it contains a rather huge
amount of oscillatory structures not present in the original data.

A remedy for this ill-posedness has been the supplement of a regulariser to
the energy functional. This regulariser introduces the a-priori knowledge that
smooth solutions should be preferred. However, despite the usefulness of non-
quadratic regularisers which allow for discontinuities in the solution, the negative
consequence of the regularisation is a result that is smoother than the original
image, since not the complete amount of blurring is reversed by the process.

Actually, there is no regularisation necessary for the model to yield the orig-
inal image as an optimum solution of the energy. Even the opposite is true: just
in the case without regularisation the model has the original image as one of
the optimum solutions. The regularisation must only be introduced in order to
guide the gradient descent towards one out of several optima that shows the
least oscillatory behaviour.
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Since the regularisation primarily serves as guidance for the optimisation
process, the proposed alternative approach continuously reduces the amount
of regularisation during optimization. Instead of considering only one energy
functional with a fixed amount of regularisation, a cascade of functionals is
taken into account. Starting with a rather large amount of regularisation, this
amount is reduced from one member of the cascade to the next, and finally leads
to the energy functional without any regularisation. The first members of the
cascade prefer smooth solutions and therefore may yield good initialisations close
to the smoothest optimum of the next version with less regularisation. On the
other hand, the later members of the cascade tend more and more to solve the
original deblurring problem without regularisation and therefore yield sharper
results. This way, one finally runs into an optimum of the functional without
regularisation, yet choosing a specific optimum that is smooth. In most cases
this optimum is not exactly the original image (it is often still too smooth),
yet it is supposed to be closer to this image than the solutions one obtains
without this continuation strategy, i.e. either with a fixed amount of smoothness
or without any regularisation.

4.2 Anisotropic Model

An improved reconstruction of edges can further be achieved by substituting the
isotropic diffusivity g with an anisotropic diffusion tensor D(∇uσ). In our model,
we use D(∇uσ) = g(∇uσ∇uT

σ ) where the Perona–Malik diffusivity g is applied
to the symmetric matrix ∇uσ∇uT

σ , as usual, by letting g act on the eigenvalues
and leaving the eigenvectors unchanged [14]. The resulting equation

0 = h̃ ∗ (h ∗ u − f) − α div (D(∇uσ)∇u)

is not the gradient descent for an energy because of the smoothed gradient.
However, this smoothing is inevitable in order to have true anisotropy.

5 Experiments

To illustrate and validate the methods described in the preceding sections, we
show experimental results obtained with two test images and two different convo-
lution kernels, Fig. 1. One is a banana-shaped blob with irregularly distributed

Fig. 1. Convolution kernels. Left: Banana-shaped kernel. Right: Discontinuous kernel
consisting of two line-shaped components
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Fig. 2. Left to right: Photograph, 480×640 pixels. – Blurred with banana-shaped ker-
nel. – Deblurred by diffusion–reaction method with Perona–Malik diffusivity, λ = 5,
α = 0.001, 1000 iterations. – Photograph blurred with discontinuous kernel. – De-
blurred by diffusion–reaction method with Perona–Malik diffusivity, λ = 1; the contin-
uation strategy was used with two steps for the diffusion weight: 2400 iterations with
α = 0.01 followed by 2400 iterations with α = 0

Fig. 3. Deblurring of a detail of the photograph from Fig. 2 with different boundary
treatment. Left to right: Photograph detail blurred with discontinuous kernel. – Lin-
ear deblurring by Wiener filter. – Diffusion–reaction deblurring with TV diffusivity.
– Diffusion–reaction deblurring with Perona–Malik diffusivity. Top row: Continuous
periodic extrapolation of the blurred image (realistic method). While details are well
reconstructed, shadow-like boundary artifacts affect the overall quality. Bottom row:
Same with special setting to suppress boundary artifacts. The image was extended by
reflection to four times its original size before blurring. This quadruple-size blurred
image was then blurred and deblurred with periodic continuation

intensity. This comes close to the blurring of photographs taken with bad il-
lumination and moving camera and objects. The second convolution kernel is
discontinuous; it is assembled from two line-shaped parts which are similar to
motion blurs. It has been selected as an example of a very challenging kernel.

The first test image used in Figs. 2 and 3 is a photograph with many small-
scale details. In fact, this is a colour image to which our diffusion–reaction equa-
tions were adapted in the straightforward way with channel coupling. This pro-
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Fig. 4. Top left: Grey-value test image. Top middle: Blurred with discontinuous
kernel. Top right: Linear deblurring by Wiener filter, boundary treatment by contin-
uous extrapolation. Bottom left: Diffusion–reaction deblurring with TV diffusivity
and continuation strategy (2 levels). Bottom middle: Same with Perona–Malik dif-
fusivity. Bottom right: Same with anisotropic diffusion tensor

Fig. 5. Detail from deblurred grey-value images, with boundary artifacts suppressed by
special test setting. Left to right: Linear filtering. – Unregularised variational model.
– Perona–Malik, constant diffusion weight. – Perona–Malik followed by nonregularised
iteration (two-step continuation strategy). – Perona–Malik, continuation strategy with
10 steps. – Anisotropic diffusion–reaction, continuation strategy with 10 steps

cedure is well-established in nonlinear diffusion literature [14]. The second test
image used in Figs. 4 and 5 is a grey-value image of three print letters. It differs
from the first image by its composition of fairly homogeneous regions.

In Fig. 2 we blur the first test image with both kernels and restore it by
diffusion–reaction deblurring with Perona–Malik diffusivity. For the discontin-
uous kernel, we also use the continuation strategy in a simple form with one
positive α followed by a fixed-point iteration with α = 0. Excellent deblurring
quality is achieved for the banana kernel (despite its irregularity) while for the
discontinuous kernel some shadow-like boundary artifacts are observed.

In Fig. 3, a more detailed comparison of deblurring algorithms is presented
for a detail from the photograph blurred with the discontinuous kernel, including
Wiener filter as an example of linear deblurring, diffusion–reaction filtering with
TV, and Perona–Malik diffusivity. Here we also demonstrate the use of our
special test setting to avoid boundary artifacts in quality measurements.

Results for the grey-value test image are shown in Fig. 4. Here, we concentrate
on the discontinuous kernel. Besides the methods mentioned above we show also
diffusion–reaction deblurring with anisotropic diffusion tensor which performs
particularly well for this type of strongly segmented images.

Fig. 5 shows a detail of our grey-value test image to demonstrate the improve-
ments made by anisotropic diffusion tensors and continuation strategy. Pure
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Table 1. SNR (dB) for deblurring with the discontinuous kernel. First values: specific
test setting for boundary conditions, second values: with continuous extrapolation

Wiener filtering Diffusion–reaction,
Perona–Malik

Diffusion–reaction,
TV diffusivity

Letters 15.6 / 7.1 18.4 / 7.3 17.1 / 7.2
– with contin. strategy 19.3 / 7.4 19.2 / 7.1
Photograph detail 15.9 / 9.4 14.9 / 6.0 14.3 / 5.9

Perona–Malik deblurring reduces oscillatory artifacts quite well but smears thin
lines while the fixed-point iteration with α = 0 restores many details but gener-
ates artifacts similar to those of linear deconvolution. The continuation strategy
combines a better restoration of details with a reasonable suppression of arti-
facts. Even in its simplest form with two steps it bears a clear improvement; more
steps lead to further enhancement. The sharpness of edges is further improved
by using the anisotropic diffusion tensor.

In Table 1 we compile measurements of the signal-to-noise ratio (SNR)

SNR(v, u) = 10 log10
var(u)

var(u − v)
dB

where u is the original image and v the deblurring result. Throughout the mea-
surements Perona–Malik deblurring tends to slightly better SNR than deblur-
ring with TV diffusivity. However, not always do SNR measurements reflect
sufficiently well visual judgement. For the photograph, e.g., the Wiener filter
performs better than diffusion–reaction deblurring in terms of SNR. On the
other hand, Fig. 3 clearly reveals the superiority of diffusion–reaction deblur-
ring.

6 Conclusions and Ongoing Work

In this paper we have developed diffusion–reaction based deconvolution methods
with forward–backward diffusivities motivated from non-convex regularisation.
We have established a continuation strategy for the control of the diffusivity
weight that allows to combine the suppression of artifacts provided by large dif-
fusion weights with the good reconstruction of details that is typically achieved
with small diffusion weights. We have further extended our algorithm by intro-
ducing an anisotropic diffusion tensor which allows for a further enhancement of
edges in the deblurring process. The favourable performance of the algorithms
even for severely blurred images and irregularly shaped kernels has been demon-
strated visually and by signal-to-noise ratio measurements.
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Ongoing work is dedicated to improvements in the numerical efficiency of
our deblurring algorithms, e.g. by utilising additive operator splitting schemes
(see [15]). We also work on improving the treatment of boundaries to reduce
artifacts even in the restoration of severely blurred images. Because of the ob-
served discrepancies between SNR measurements and visual quality judgement,
the development of more adequate quality criteria is a further issue.

References

1. L. Bar, N. Sochen, N. Kiryati. Variational pairing of image segmentation and blind
restoration. In T. Pajdla, J. Matas, editors, Computer Vision – ECCV 2004,
vol. 3022 of Lecture Notes in Computer Science, pages 166–177, Berlin, 2004,
Springer

2. M. Bertero and P. Boccacci. Introduction to Inverse Problems in Imaging. IoP
Publishing, Bristol, 1998.

3. M. Bertero, T. A. Poggio, and V. Torre. Ill-posed problems in early vision. Pro-
ceedings of the IEEE, 76(8):869–889, Aug. 1988.

4. A. Blake and A. Zisserman. Visual Reconstruction. MIT Press, Cambridge, MA,
1987.

5. T. Chan, R. Chan, and H. Zhou. A continuation method for total variation denois-
ing problems. In F. Luk, editor, Proceedings of the SPIE Conference on Advanced
Signal Processing Algorithms, vol. 2563 of Algorithms, Architectures, and Imple-
mentations, pages 314–325, San Diego, 1995

6. T. F. Chan and C. K. Wong. Total variation blind deconvolution. IEEE Transac-
tions on Image Processing, 7:370–375, 1998.

7. R. C. Gonzalez and R. E. Woods. Digital Image Processing. Addison–Wesley,
Reading, second edition, 2002.

8. A. Marquina, S. Osher. A new time dependent model based on level set motion for
nonlinear deblurring and noise removal. In M. Nielsen, P. Johansen, O. F. Olsen,
and J. Weickert, editors, Scale-Space Theories in Computer Vision, volume 1682
of Lecture Notes in Computer Science, pages 429–434. Springer, Berlin, 1999.

9. S. Osher and L. Rudin. Shocks and other nonlinear filtering applied to image
processing. In A. G. Tescher, editor, Applications of Digital Image Processing XIV,
volume 1567 of Proceedings of SPIE, pages 414–431. SPIE Press, Bellingham, 1991.

10. S. Osher, L. Rudin. Total variation based image restoration with free local con-
straints. Proceedings of the IEEE ICIP, 31–35, Austin, 1994

11. P. Perona and J. Malik. Scale space and edge detection using anisotropic diffu-
sion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12:629–
639, 1990.

12. L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D, 60:259–268, 1992.

13. J. Weickert. A review of nonlinear diffusion filtering. In B. ter Haar Romeny, L. Flo-
rack, J. Koenderink, and M. Viergever, editors, Scale-Space Theory in Computer
Vision, volume 1252 of Lecture Notes in Computer Science, pages 3–28. Springer,
Berlin, 1997.

14. J. Weickert. Anisotropic Diffusion in Image Processing. Teubner, Stuttgart, 1998.



PDE-Based Deconvolution with Forward-Backward Diffusivities 597

15. J. Weickert, B. M. ter Haar Romeny, and M. A. Viergever. Efficient and reliable
schemes for nonlinear diffusion filtering. IEEE Transactions on Image Processing,
7(3):398–410, Mar. 1998.

16. N. Wiener. Extrapolation, Interpolation and Smoothing of Stationary Time Series
with Engineering Applications. Cambridge (Mass.), 1949, The MIT Press

17. Y.-L. You and M. Kaveh. Anisotropic blind image restoration. In Proc. 1996
IEEE International Conference on Image Processing, volume 2, pages 461–464,
Lausanne, Switzerland, Sept. 1996.


	Introduction
	Linear Models
	The Basic Deblurring PDE
	Variational Motivation
	Choice of the Diffusivity
	Boundary Conditions
	Choice of the Diffusion Weight
	Numerical Implementation

	Extensions
	Continuation Strategy for Optimisation
	Anisotropic Model

	Experiments
	Conclusions and Ongoing Work

