
Numer. Math. (1996) 75: 135–152 Numerische
Mathematik
c© Springer-Verlag 1996

Electronic Edition

The cascadic multigrid method for elliptic problems

Folkmar A. Bornemann, Peter Deuflhard

Konrad-Zuse-Zentrum Berlin, Heilbronner Strasse 10, D-10711 Berlin, Germany and Fachbereich
Mathematik, Freie Universität Berlin, Germany; e-mail:bornemann@zib-berlin.de

Received November 12, 1994 / Revised version received October 12, 1995

Summary. The paper deals with certain adaptive multilevel methods at the con-
fluence of nested multigrid methods and iterative methods based on the cascade
principle of [10]. From the multigrid point of view, no correction cycles are
needed; from the cascade principle view, a basic iteration method without any
preconditioner is used at successive refinement levels. For a prescribed error tol-
erance on the final level, more iterations must be spent on coarser grids in order
to allow for less iterations on finer grids. A first candidate of such acascadic
multigrid methodwas the recently suggestedcascadic conjugate gradient method
of [9], in short CCG method, which used the CG method as basic iteration method
on each level. In [18] it has been proven, that the CCG method is accurate with
optimal complexity for elliptic problems in 2D and quasi-uniform triangulations.
The present paper simplifies that theory and extends it to more general basic
iteration methods like the traditional multigrid smoothers. Moreover, an adaptive
control strategy for the number of iterations on successive refinement levels for
possibly highly non-uniform grids is worked out on the basis of a posteriori
estimates. Numerical tests confirm the efficiency and robustness of the cascadic
multigrid method.

Mathematics Subject Classification (1991):65F10, 65N30, 65N55

0. Introduction

In this paper we consider linear scalar elliptic problems on general domains with
space dimensiond arbitrary, but practically up to 3. For the numerical solution
of such problems with finite elements,multigrid methodsare a both popular and
efficient choice, cf. Hackbusch [13]. Such methods work on a sequence of grid
levelsj = 0, 1, . . . `, where in our notationj = 0 denotes the coarse grid level and
j > 0 the refinement levels. For the case ofadaptivegrids, the local multigrid
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136 F.A. Bornemann, P. Deuflhard

method suggested by [7] turned out to be the method of choice. In the adaptive
setting it is favorable to consider nested iterations, wherein the computed solution
on the previous level serves as starting point for the iteration on the new level.
A typical distinction of different types of nested multigrid methods is made by
the numberp of correction cycles on each level:W-cycles are characterized
by p = 2, V -cycles byp = 1. In view of convergence theory,W-cycles are
much simpler to handle, whereas for actual implementationV -cycles are mostly
preferred, since they require less computational effort per total iteration. During
the eighties, further simplifications skipping the correction cycles at all (p = 0)
seem to have been discussed; people called them “one-way multigrid” methods
[11]. However, those simplifications have been abandoned in the sequel, since
they were not regarded as robust enough in terms of optimal computational
complexity.

The present paper deals with a kind of “one-way multigrid” method, which
has evolved from thecascade principledue to Deuflhard, Leinen, Yserentant [10],
the main idea of which was to terminate the iteration by anadaptive controlas
soon as the algebraic error is considerably below the discretization error. The first
algorithmic realization [10] ford = 2 had used the conjugate gradient method
with the hierarchical basis preconditioner of Yserentant [21], later realizations
[3] included the cased = 3 and were based on the theoretically more satisfactory
multilevel preconditioner of Bramble, Pasciak and Xu [8, 19, 17, 6], the so called
BPX-preconditioner, which can be viewed as the additive Schwarz equivalent of
a V -cycle [20].

Deuflhard [9] suggested, only quite recently, the use of an a posteriori al-
gorithmic control of the “one-way multigrid” in combination with the conjugate
gradient method. He called the method cascadic conjugate gradient method (CCG
method). As a distinctive feature this method performsmore iterations on coarser
levelsso as to obtain less iterations on finer levels. The first publication of the
algorithm in [9] contained rather convincing numerical results, but no theoret-
ical justification. Shaidurov [18] was the first to prove accuracy and optimal
complexity of the CCG iteration forH 2-regular problems in dimensiond = 2
and quasi-uniform triangulations using some a priori choice of the number of
iterations, strictly decreasing for increasingly fine triangulations.

The purpose of the present paper is to both simplify Shaidurov’s theoretical
results and extend them to the case when the CG iteration on each refinement
level is replaced by some general smoother like the traditional candidates sym-
metric Gauß-Seidel, SSOR or damped Jacobi iteration. We call such “one-way
multigrid” methodscascadic multigrid methods.

In order to convey their basic structure, we give a schematic comparison of
the cascadic multigrid method with the nestedV -cycle multigrid method:
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In Sect. 1 below, we first prove accuracy and optimal complexity of the
cascadic multigrid method forH 1+α-regular elliptic problems using linear energy
reducing smoothers. In the next section, we show how Shaidurov’s results for
the (nonlinear) conjugate gradient method fit into our frame work. Both Sect. 1
and Sect. 2 requirequasi-uniformgrids. The main results are that

– for d = 3: the cascadic multigrid method is accurate with optimal complex-
ity for any choice of an energy reducing smoother (symmetric Gauß-Seidel,
SSOR, damped Jacobi or conjugate gradient iteration)

– for d = 2: the cascadic multigrid method has optimal complexity for the
conjugate gradient method as a smoother and nearly optimal complexity (apart
from a log-term) for the one-step iterative smoothers.

In the adaptive setting, however, we aim at the possibility of rather nonuniform
grids. Therefore, in Sect. 3, we revisit the theory in view of anadaptiveimple-
mentation and derive an a posteriori termination strategy, backed by theory, for
the number of smoothing iterations on each refinement level. Finally, in Sect. 4,
the derived strategy is illustrated by comparative numerical experiments for the
CCG method, the cascadic multigrid method with the conjugate gradient method
preconditioned by the BPX method, and the cascadic multigrid method with the
symmetric Gauß-Seidel iteration as smoother.

1. Convergence analysis for general smoothers

In this section, we analyze the cascadic multigrid method with respect to accuracy
and computational complexity using a general smoother as iterative method on
each discretization level.

LetΩ ⊂ R
d be a polygonal Lipschitz domain. We consider an elliptic Dirich-

let problem onΩ in the weak formulation:

u ∈ H 1
0 (Ω) : a(u, v) = (f , v)L2 ∀v ∈ H 1

0 (Ω).

Heref ∈ H−1(Ω) anda(·, ·) is assumed to be aH 1
0 (Ω)-elliptic symmetric bilinear

form. The induced energy-norm will be denoted by

‖u‖2
a = a(u, u) ∀u ∈ H 1

0 (Ω).

Given a nested family of triangulations (Tj )`j =1, the spaces of linear finite elements
are
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Xj = {u ∈ C(Ω̄) : u|T ∈ P1(T) ∀T ∈ Tj , u|∂Ω = 0},
whereP1(T) denotes the linear functions on the triangleT. We have

X0 ⊂ X1 ⊂ . . . ⊂ X` ⊂ H 1
0 (Ω).

The finite element approximations are given by

uj ∈ Xj : a(uj , vj ) = (f , vj )L2 ∀vj ∈ Xj .

Denoting thebasic iterative procedureon each level byI , the cascadic
multigrid method can be written as:

(i) u∗0 = u0

(ii) j = 1, . . . , ` : u∗j = Ij ,mj u
∗
j−1.

(1)

HereIj ,mj denotesmj steps of the basic iteration applied on levelj .
We call a cascadic multigrid methodoptimal for level ` (with respect to the

energy norm), if we obtainboth accuracy

‖u` − u∗` ‖a ≈ ‖u − u`‖a,

which means that the iteration error is comparable to the approximation error,
and multigrid complexity

amount of work =O(n`),

wheren` = dimX`.
In this and the following section we considerquasi-uniformtriangulations

with meshsize parameter

1
c

2−j ≤ hj = max
T∈Tj

diamT ≤ c 2−j .

For ease of notation, we will use the symbolc for any positive constant, that
only depends on the bilinear forma(·, ·), onΩ and the shape regularity as well as
the quasi-uniformity of the triangulations. All other dependencies will be stated
explicitly.

A general assumption on the elliptic problem will beH 1+α-regularity for
some 0< α ≤ 1, i.e.,

‖u‖H 1+α ≤ c ‖f ‖Hα−1 ∀f ∈ H α−1(Ω).

The approximation error of the finite element method is then given in energy
norm as

‖u − uj ‖a ≤ c hαj ‖f ‖Hα−1 j = 0, . . . , `,(2)

cf. [14, Lemma 8.4.9]. By the well-known Aubin-Nitsche lemma and an inter-
polation argument one gets theapproximation property

‖uj − uj−1‖H 1−α ≤ c hαj ‖uj − uj−1‖a j = 1, . . . , `,(3)
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The cascadic multigrid method for elliptic problems 139

cf. [14, Theorem 8.4.14].
We consider the following type of basic iterations for the finite-element prob-

lem on levelj started withu0
j ∈ Xj :

uj − Ij ,mj u
0
j = Sj ,mj (uj − u0

j )

with a linear mappingSj ,mj : Xj → Xj for the error propagation. We call the
basic iteration anenergy reducing smoother, if it obeys thesmoothing properties

(i) ‖Sj ,mj vj ‖a ≤ c
h−1

j

mγ
j

‖vj ‖L2

(ii) ‖Sj ,mj vj ‖a ≤ ‖vj ‖a

∀vj ∈ Xj ,(4)

with a parameter 0< γ ≤ 1. As is shown in [13] the symmetric Gauß-Seidel,
the SSOR and the damped Jacobi iteration are smoothers in the sense of (4) with
parameter

γ = 1/2.

Lemma 1.1. A smoother in the sense of(4) fulfills

‖Sj ,mj vj ‖a ≤ c
h−αj

mαγ
j

‖vj ‖H 1−α ∀vj ∈ Xj .

Proof. This can be shown be a usual interpolation argument using discrete
Sobolev norms like those introduced by Bank and Dupont [1]. These discrete
norms are equivalent to the fractional Sobolev norms in the considered range of
smoothness. ut

We are now able to state and prove the main convergence estimate for the
cascadic multigrid method (1).

Theorem 1.2. The error of the cascadic multigrid method with a smoother as
basic iteration can be estimated by

‖u` − u∗` ‖a ≤ c
∑̀
j =1

1
mαγ

j

‖uj − uj−1‖a ≤ c
∑̀
j =1

hαj
mαγ

j

‖f ‖Hα−1.

Proof. For j = 1, . . . , ` we get by the linearity ofSj ,mj

‖uj − u∗j ‖a = ‖uj − Ij ,mj u
∗
j−1‖a = ‖Sj ,mj (uj − u∗j−1)‖a

≤ ‖Sj ,mj (uj − uj−1)‖a + ‖Sj ,mj (uj−1 − u∗j−1)‖a.

The first term can be estimated by Lemma 1.1 and the approximation property
(3):
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‖Sj ,mj (uj − uj−1)‖a ≤ c
h−αj

mαγ
j

‖uj − uj−1‖H 1−α

≤ c
1

mαγ
j

‖uj − uj−1‖a.

If we estimate the second term by property (4(ii)) of a smoother, we get

‖uj − u∗j ‖a ≤ c
mαγ

j

‖uj − uj−1‖a + ‖uj−1 − u∗j−1‖a.(5)

Using u∗0 = u0 we get by induction

‖u` − u∗` ‖a ≤ c
∑̀
j =1

1
mαγ

j

‖uj − uj−1‖a.

Galerkin orthogonality gives

‖uj − uj−1‖a ≤ ‖u − uj−1‖a,

so that the error estimate (2) yields the second assertion.ut
Since we have

2`−j h`/c ≤ hj ≤ c 2`−j h`

Theorem 1.2 leads us to consider sequencesm1, . . . ,m` of the kind

mj = dβ`−j m`e,(6)

for some fixedβ > 0. Accuracyof the cascadic multigrid method is now given
for sufficiently largeβ as the following Lemma shows.

Lemma 1.3. Let the number mj of iterations on level j be given by(6). The
cascadic multigrid method yields the error

‖u` − u∗` ‖a ≤


c · 1

1− (2/βγ)α
· hα`

mαγ
`

‖f ‖Hα−1, for β > 21/γ ,

c · ` · hα`
mαγ
`

‖f ‖Hα−1, for β = 21/γ .

Proof. By Theorem 1.2 we get

∑̀
j =1

hαj
mαγ

j

≤ c
hα`

mαγ
`

`−1∑
j =0

(
2
βγ

)jα

.

If β > 21/γ the last sum is geometric and can be estimated by

1
1− (2/βγ)α

.

In the caseβ = 21/γ the last sum is equal tò. ut
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In contrast, theoptimal complexityof the method is given for a sufficiently
smallβ.

Lemma 1.4. Let the number mj of iterations on level j be given by(6). The
computational cost of the cascadic multigrid method is proportional to

∑̀
j =1

mj nj ≤


c · 1

1− β/2d
· m` n`, for β < 2d,

c · ` · m` n`, for β = 2d.

Proof. We have 2dj/c ≤ nj = dimXj ≤ c 2dj . Therefore we get∑̀
j =1

mj nj ≤ c mj nj

`−1∑
j =0

(
β

2d

)j

.

If β < 2d the last sum is geometric and can be estimated by

1
1− β/2d

.

In the caseβ = 2d the last sum is equal tò. ut
The last two Lemmas show that the two goals accuracy and multigrid com-

plexity are not contradicting each other as long as

γ > 1/d,

since whenever this condition holds we are able to choose someβ inbetween

21/γ < β < 2d.

In the caseγ = 1/d either the accuracy or the complexity has to deteriorate
logarithmically. We choose to fix accuracy and obtain as immediate consequence
of our results the following Lemma.

Lemma 1.5. Let γ = 1/d. If we chooseβ = 2d and the number of iterations on
level ` as

m` = dm∗ · `d/αe
we get for the error of the cascadic multigrid method

‖u` − u∗` ‖a ≤ c
hα`

mα/d
∗

‖f ‖Hα−1,

and as complexity ∑̀
j =1

mj nj ≤ c m∗n`(1 + logn`)
1+d/α.

Our results show, that the cascadic multigrid method with a plain symmet-
ric Gauß-Seidel, SSOR or damped Jacobi iteration (all withγ = 1/2) as basic
iteration is

– optimal for d = 3,
– accurate with complexityO(n` (1 + logn`)1+2/α) for d = 2.
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2. Conjugate gradient method as smoother

When using the conjugate gradient method as the basic iteration we have to
tackle with a problem: the result

Ij ,mj u
0
j

of mj steps of the cg-method isnot linear in the starting valueu0
j . Thus, it seems

that our frame work, developed so far, does not cover the cg-method. However,
there is a remedy which uses results on the cg-method well known in the Russian
literature [12, 15] or can be seen as a consequence of the theory of smoothing
properties for semi-iterative methods [13, Sect. 6.2.5].

We have to fix some notation. Let〈·, ·〉 be the euclidean scalar product of the
nodal basis in the finite element spaceXj , the induced norm will be denoted by

|vj |2 = 〈vj , vj 〉 ∀vj ∈ Xj .

We define the linear operatorAj : Xj → Xj by

〈Avj , wj 〉 = a(vj , wj ) ∀vj , wj ∈ Xj ,

which is represented in the nodal basis by the usualstiffness matrix. The error
of the cg-method applied to the stiffness matrix can be expressed by

‖uj − Ij ,mj u
0
j ‖a = min

p∈Pmj ,

p(0)=1

‖p(Aj )(uj − u0
j )‖a.

HerePmj denotes the set of polynomialsp with degp ≤ mj .
The idea is now, to find some polynomialqj ,mj ∈ Pmj with qj ,mj (0) = 1, such

that
Sj ,mj = qj ,mj (Aj )

defines a linear smoother in the sense of (4). Since the error in the energy-norm
of the CG method is thenmajorizedby this smoother, the results of Sect. 1 are
immediately valid for the CG method.

The choice ofqj ,mj depends on the following solution of a polynomial mini-
mization problem, which can be traced back at least to a paper of Godunov and
Prokopov [12].

Lemma 2.1. Letλ > 0. The Chebyshev polynomial T2m+1 has the representation

T2m+1(x) = (−1)m(2m + 1)x φλ,m(λx2)

with a uniqueφλ,m ∈ Pm and φλ,m(0) = 1. The polynomialφλ,m solves the
minimization problem

max
x∈[0,λ]

|√xp(x)| = min!

over all polynomials p∈ Pm which are normalized by p(0) = 1. The minimal
value is given by
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The cascadic multigrid method for elliptic problems 143

max
x∈[0,λ]

|√xφλ,m(x)| =

√
λ

2m + 1
.

Moreover we have
max

x∈[0,λ]
|φλ,m(x)| = 1.

As a fairly easy consequence one obtains the following result.

Theorem 2.2. The linear operator

Sj ,mj = φλj ,mj (Aj ), λj = maxσ(Aj )

satisfies

(i) ‖Sj ,mj vj ‖a ≤
√
λj

2mj + 1
|vj |

(ii) ‖Sj ,mj vj ‖a ≤ ‖vj ‖a

∀vj ∈ Xj .

Proof. During the proof we will suppress all indices which are used in the formu-
lation of the Theorem. Letψ1, . . . , ψn be the orthonormal basis ofX consisting
of eigenvectors forA with

Aψµ = λµψµ, µ = 1, . . . , n.

We choose the ordering to be

0< λ1 ≤ . . . ≤ λn = λ.

Now we get forv ∈ X by Lemma 2.1

‖S v‖2
a = 〈Aφ2

λ,m(A)v, v〉 =
n∑
µ=1

λµφ
2
λ,m(λµ)〈v, ψµ〉2

≤


λ

(2m + 1)2
∑

µ
〈v, ψµ〉2 =

λ

(2m + 1)2
|v|2,

∑
µ λµ〈v, ψµ〉2 = 〈Av, v〉 = ‖v‖2

a. ut

Compared to the standard Chebyshev type convergence estimate, this estimate
seems to be comparatively poor. However, it can be made a useful analytical tool,
if we take care of the scaling of the linear system in a clever way. In fact, a little
finite element theory shows that along this line we are able to define a majorizing
linear smoother for the cg-method.

Corollary 2.3. The linear operator

Sj ,mj = φλj ,mj (Aj ), λj = maxσ(Aj )

defines a smoother in the sense of (4) with parameterγ = 1.
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144 F.A. Bornemann, P. Deuflhard

Proof. The usual inverse inequality shows that the maximum eigenvalue of the
stiffness matrix can be estimated by

λj ≤ chd−2
j ,

cf. [14, Theorem 8.8.6]. The euclidean norm with respect to the nodal basis is
related to theL2-norm by

1
c

hd
j |vj |2 ≤ ‖vj ‖2

L2 ≤ chd
j |vj |2,

cf. [14, Theorem 8.8.1]. Thus Theorem 2.2 gives

‖Sj ,mj vj ‖a ≤ c
h(d−2)/2

j

2mj + 1
|vj | ≤ c

h−1
j

2mj + 1
‖vj ‖L2,

i.e., (4(i)) with γ = 1. Property (4(ii)) was already stated in Theorem 2.2.ut

With the help of this majorizing smoother, it is immediately clear, that The-
orem 1.2, Lemma 1.3, Lemma 1.4 and Lemma 1.5 remain valid for the cascadic
multigrid method with the cg-method as basic iteration, which is the CCG-method
of [9]. In particular, the CCG method is seen to be optimal ford = 2, 3.

3. Adaptive cascadic multigrid method

In this section, we develop an adaptive control of the cascadic multigrid method
which is based on our theoretical considerations and some additional assump-
tions on the family of triangulations. For adaptive triangulations we drop the
assumption of quasi-uniformity. All constants in the sequel will not depend on
the quasi-uniformity, but only on the shape regularity of the triangulations.

In order to bound the maximum eigenvalue of all involved matrices simul-
taneously, we compute the stiffness matrixAj with respect to the scaled nodal
basis

h(2−d)/2
j ,i ψj ,i i = 1, . . . , nj ,

where{ψj ,i }i is the usual nodal basis ofXj and

hj ,i = diam suppψj ,i .

Remark .This scaling is equivalent to adiagonal preconditioningof the stiffness
matrix. We strongly recommend to use a diagonal scaling for all problems. For
instance, unpleasant effects resulting from (jump-)discontinuous coefficients of
the elliptic operator can be avoided, certainly in dimensiond = 2 and for non-
pathological situations in dimensiond = 3.
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In this section we denote by〈·, ·〉 the euclidean scalar product with respect
to this scalednodal basis. Xu [19] has shown the equivalence of norms

1
c
|vj |2 ≤

∑
T∈Tj

h−2
T ‖vj ‖2

L2(T) ≤ c |vj |2, hT = diamT,

and the bound

λj = maxσ(Aj ) ≤ c

for the maximum eigenvalue ofAj . Hence, we get for the smoothing iterations
considered

‖Sj ,mj vj ‖a ≤ c
mγ

j

∑
T∈Tj

h−2
T ‖vj ‖2

L2(T)

1/2

,

where we haveγ = 1/2 for the symmetric Gauß-Seidel, SSOR, damped Jacobi
iteration andγ = 1 for the majorizing linear smoother of the conjugate gradient
method as introduced in Theorem 2.2

In order to turn this into a starting point for a theorem like Theorem 1.2 we
make the following two assumptions on the family of triangulations:

(i) h−2
T ‖uj − uj−1‖2

L2(T) ≤ c‖uj − uj−1‖2
H 1(T), ∀T ∈ Tj

(ii) ‖u − uj ‖ ≤ c n−1/d
j ‖f ‖L2,

(7)

which are heuristically justified foradaptive triangulations. Assumption (i)
means, that the finite element correction is locally of high frequency with re-
spect to the finer triangulation. In other words, the refinement resolves changes
but not more. Thus it is a statement of theefficiencyof a triangulation. As-
sumption (ii) is a statement of optimalaccuracy, which is justified by results of
nonlinear approximation theory like [16]. Note that quasi-uniform triangulations
do not satisfy assumption (ii) for problems which are notH 2-regular.

The same proof as for Theorem 1.2 now gives the following

Lemma 3.1. Assumption (7) implies, for the error of the cascadic multigrid
method,

‖u` − u∗` ‖a ≤ c
∑̀
j =1

1
mγ

j

‖uj − uj−1‖a ≤ c
∑̀
j =1

1

mγ
j n1/d

j

‖f ‖L2.

We can now extend Lemma 1.3 and Lemma 1.4 to the adaptive case. Here
we have to use additionally, that the sequence of number of unknowns belongs
to a geometric progression:

nj < σ0nj ≤ nj +1 ≤ σ1nj j = 0, 1, . . . .

With the choice of the iteration numbersmj on level j as
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mj =

⌈
m`

(
n`
nj

)(d+1)/2dγ
⌉
,(8)

we get ford > 1 under assumption (7) the final error

‖u` − u∗` ‖a ≤ c

mγ
` n1/d

`

‖f ‖L2

and forγ = 1 the complexity

∑̀
j =1

mj nj ≤ c m̀ n`.

However, we will see in the numerical experiments, that optimal complexity can
also be obtained forγ = 1/2, indicating that there should be sharper estimates
than those used in our present analysis.

However, at the intermediate levelj we do not know the numbern` of
nodal points at the final level̀, which means that so far our iteration is not yet
implementable. To make it implementable, wedefinethe final level` as the first
level on which the approximation error is below some user given tolerance TOL.
Hence assumption (7) gives us the relation

‖u − uj ‖a

TOL
≈
(

n`
nj

)1/d

,(9)

which leads us to replace (8) by

mj =

⌈
m`

(‖u − uj ‖a

TOL

)(d+1)/2γ
⌉
.(10)

This algorithm is closest to the a priori choice of the parametersmj . In actual
computation, the basic iteration can be accurate enough much earlier than stated
by theory. With these preparations, we may now go back to the crucial recursion
(5), i.e.,

‖uj − u∗j ‖a ≤ c
mγ

j

‖u − uj−1‖a + ‖uj−1 − u∗j−1‖a,

which we simply turn into a termination criterion for the basic iteration by in-
serting (10). We thus end up with the termination criterion

‖uj − u∗j ‖a ≤ ρ

(
TOL

‖u − uj ‖a

)(d+1)/2

‖u − uj−1‖a + ‖uj−1 − u∗j−1‖a,(11)

where 0< ρ ≤ 1 is some safety factor. Note that the smoothing parameterγ
dropped out since we stress the accuracy aspect of our analysis for the adaptive
control. Herein the approximation error‖u − uj ‖a is not known, but can be
replaced by the estimate
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‖u − uj ‖a ≈ ‖u − uj−1‖a

(
nj−1

nj

)1/d

≈ εj−1

(
nj−1

nj

)1/d

,

where εj−1 denotes some estimate of the discretization error on the previous
level, which is certainly provided by an adaptive algorithm; cf. [10, 4]. If we
replace the iteration errors‖uj − u∗j ‖a, ‖uj−1 − u∗j−1‖a by appropriate estimates
δj , δj−1, the design of an implementable control strategy for the adaptive cascadic
multigrid method is completed:

δj ≤ ρ

(
TOL
εj−1

(
nj

nj−1

)1/d
)(d+1)/2

εj−1 + δj−1.(12)

Finally, we want to compare the termination criterion (11) with the criterion

‖uj − u∗j ‖a ≤ ρ∗ TOL

as suggested in [9] for the CCG method, wherein 0< ρ∗ ≤ 1 was understood as
some safety factor. By using the relation (9) and the assumption (7(ii)) we can
bound the right hand side of (11) as follows

‖uj − u∗j ‖a ≤ c ρ σ1/d
1 TOL

(
nj

n`

)(d−1)/2d

+ ‖uj−1 − u∗j−1‖a.

This recursion yields

‖uj − u∗j ‖a ≤ c ρ σ1/d
1 TOL

j∑
k=1

(
nk

n`

)(d−1)/2d

≤ c ρ σ1/d
1 TOL

j∑
k=1

(
1
σ0

)(`−k)(d−1)/2d

≤ cσ1/d
1

1− σ
(1−d)/2d
0

ρ︸ ︷︷ ︸
=ρ∗

·TOL .

At first glance, we seem to have confirmed the above termination criterion. How-
ever, the derivation leads to a factorρ∗, which is no longer understood to be
restricted byρ∗ ≤ 1. In complicated examples, a reasonable choice ofρ∗ will be
rather delicate – as has been confirmed by numerical experiments especially with
reentrant corners. In contrast to this undesirable sensitivity, the new termination
criterion (12) does not depend too critically on the choice of the safety parameter
ρ.
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Fig. 1. Typical adaptive triangulation with isolines of solution

4. Numerical experiments

The above designed adaptive cascadic multigrid method has been implemented
in three different variants:

– CCG: the cascadic multigrid method with the conjugate gradient method as
the basic iteration (cascadic conjugate gradient method),

– CSGS: the cascadic multigrid method with the symmetric Gauß-Seidel itera-
tion as the basic iteration,

– adaptive V-cycle: the cascadic multigrid method with a multigrid V-cycle
as the basic iteration using a Jacobi smoother, local (new nodal points and
neighbors only) in the case of locally refined triangulations. This implemen-
tation can be viewed as a robust and efficientautomatic choiceof the number
mj of V-cycles on levelj for the usual nested multigrid method.

All variants used the termination criterion (12), where the algebraic error estimate
δj was realized as the diagonally scaled residual and the discretization error
estimateεj was taken to be the usual edge oriented estimator due to [10] for
d = 2 and the edge and face oriented estimator from [4] ford = 3.

The three algorithms were tested in a variety of problems including

– spatial dimensiond = 2, 3
– uniform and adaptive grid refinement
– selfadjoint singular perturbation problems arising in the transient phase of

parabolic problems due to discretization in time, cf. [2]
– problems with material jumps in the coefficients
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The new methods CCG and CSGS worked efficiently in all these cases, when
diagonalpreconditioning was used, as indicated by the theoretical considerations
of Sect. 3. In particular, the new termination strategy (12) turned out to be clearly
more robust than the previous one suggested in [9]. Moreover, there was no
difference of the behavior in two and three space dimensions. On this basis, only
one single two-dimensional example with a reentrant corner was regarded to be
enough to demonstrate the features of the cascadic multigrid method.

102 103 104

2

4

6

8

10

CSGS

CCG

nj

mj

Fig. 2. Comparative number of iterations vs. number of unknowns

Example .Consider the elliptic problem

−∆u = 0, u|Γ1 = 103, u|Γ2 = 0, ∂nu|Γ3 = 0

on a domainΩ which is a unit square with slit

Ω = {x ∈ R2 : |x|∞ ≤ 1} ∩ {x ∈ R2 : |x2| ≥ 0.03x1}.
The boundary pieces are

Γ1 = {x ∈ Ω : x1 = 1, x2 ≥ 0.03}, Γ2 = {x ∈ Ω : x1 = 1, x2 ≤ −0.03},
andΓ3 = ∂Ω \ (Γ1 ∪ Γ2).

The accuracy parameter was set to a relative TOLrel = 10−2, i.e.,

TOL = ‖u‖a · TOLrel = 412.52 · TOLrel .

Throughout the safety factor was set toρ = 0.4.
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Figure 1 shows a typical adaptive triangulation, wherein a geometric increase
of nodes withσ0 = 1.1 was imposed, and the corresponding isolines of the solu-
tion. In order to illustrate the iterative behavior of the cascadic multigrid variants,
Fig. 2 shows the numbermj of iterations. The V-cycle has been excluded here
since global smoothing of CCG and CSGS is not comparable to local smoothing
of the V-cycle. However, all methods can be compared with respect to comput-
ing time. Therefore, Fig. 3 shows the actual accumulated computing time (SUN
sparc IPX) spent in the iteration versus the numbernj of nodes. For comparison
reasons we included as a further method:

– plain V-cycle: nested V-cycle multigrid with local Jacobi smoothing, using
only oneV-cycle per level. This minimal variant serves as thelower bound
for all possible strategies to control the nested V-cycle multigrid method. It
cannot be viewed as a generally robust choice, but leads to reasonable results
in this example.

102 103 104

10−1

100

101

102

V-cycle (adap.)

V-cycle (plain)

CCG

CSGS

nj

t [sec]

Fig. 3. Accumulated iteration time vs. number of unknowns

On the final level the CCG variant is roughly a factor of two faster than
the other variants. This effect is due to the fact, that we have only one iteration
on the final levels which dominate the total iteration cost. Butone symmetric
Gauß-Seidel step is twice as costly as one conjugate gradient step. The same
observation holds for a V-cycle with local Jacobi smoothing, since it touches
roughly twice as many nodes as contained in the final level; cf. [2, Lemma 2.6].

For the sake of clarity, however, it should be mentioned that the process of
solving the problem required only a minor portion of the total computing time
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compared to the effort spent inestablishingthe problem, i.e., computing the
stiffness matrices.

Table 1. Algebraic errors of the variants for TOLrel = 2.24 · 10−2

variant
‖u15−u∗15‖a

‖u15‖a

‖u15−u∗15‖L2

‖u15‖L2

∑
CPU-time

n15

CCG 6 · 10−2 1 · 10−2 2.14 ms
CSGS 6 · 10−2 1 · 10−2 2.70 ms

V-cycle (plain) 2 · 10−2 1 · 10−3 3.61 ms
V-cycle (adap.) 2 · 10−3 1 · 10−4 4.27 ms

Table 1 shows the behavior of the (purely)algebraic error for the different
variants. The relative tolerance TOLrel = 2.24·10−2 is used yielding 15 refinement
levels with a final triangulation of roughly 4400 nodal points. This allows one
to estimate thediscretization errorusing two furtheruniform refinements:

‖u − u15‖a

‖u‖a
≈ 2 · 10−2,

‖u − u15‖L2

‖u‖L2
≈ 1 · 10−4,

where
‖u‖a = 412.52, ‖u‖L2 = 1121.36.

The algebraic errors inenergy normare comparable to the required accuracy.
However, the variants without coarse grid corrections are slightly less accurate
by a factor of three, whereas the nested multigrid variants stay below the dis-
cretization error.

With respect to theL2-norm only the adaptive V-cycle variant gives satis-
factory results. This fact points out that the given termination criterion (12) can
be viewed as a robust tool to control the number of iterations in nested multigrid
methods.

Remark .The reader should note, that the termoptimality has been used in this
paper with respect to theenergy norm. As Table 1 already indicates things are
totally different for theL2- or L∞-norm. By means of simple examples one can
prove that the cascadic multigrid methodcannotbe optimal with respect to the
L2-norm. There is a rather precise theoretical understanding of this phenomenon,
which will be subject of a forthcoming publication [5].
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